Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Materials that change temperature in magnetic fields could lead to new refrigeration technologies that reduce the use of greenhouse gases, thanks to new research at the U.S. Department of Energy's Argonne National Laboratory and Ames National Laboratory.

Scientists carrying out X-ray experimentation at the Advanced Photon Source at Argonne — the nation's most powerful source of X-rays for research — are learning new information about magnetocaloric materials that have potential for environmentally friendly magnetic refrigeration systems.

All eyes are on where hurricanes make landfall, but the massive storms actually cause the most deaths inland, where severe flooding often surprises residents.

Now, researchers are learning how to predict where tropical storms and hurricanes will dump the most rain — even days after — and hundreds of miles away from — landfall.

Corene Matyas, an assistant professor of geography at the University of Florida, outlines new tools to predict how the storm’s intensity, distance it has moved inland and landscape topography alters its “rain shields” — the bands of heavy rain so visible in Doppler radar images.

The world is abuzz with the discovery of an extrasolar, Earthlike planet around the star Gliese 581 that is relatively close to our Earth at 20 light years away in the constellation Libra.

Bruce Fegley, Jr., Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, has worked on computer models that can provide hints to what comprises the atmosphere of such planets and better-known celestial bodies in our own solar system.

New computer models, from both Earth-based spectroscopy and space mission data, are providing space scientists compelling evidence for a better understanding of planetary atmospheric chemistry.

A new way of looking at a previously abandoned mathematical model might help astronomers study and accurately identify an exotic clan of gravitational waves.

The waves in question come from small black holes or neutron stars in extremely elongated orbits around vastly larger black holes, says Dr. Lior Burko, an assistant physics professor at The University of Alabama in Huntsville (UAH). "This reopens an area of research that was closed several years ago."

The exotic gravitational waves are generated (as predicted by general relativity theory) when an orbiting compact object changes speed, accelerating as it approaches the larger black hole and slowing as it moves away.

New studies show that iron, the principal constituent of the innermost parts of the earth’s core, becomes unusually ‘soft’ at the extreme pressures and temperatures that prevail there. The findings enhance our possibility of understanding the innermost parts of the earth and how earthquakes occur.

The findings were attained by a team of Swedish and Russian researchers, who used advanced simulations on Swedish supercomputers. This new knowledge explains some of the seismic data-signals from earth tremors-that stations around the world gather and that have puzzled scientists until now.

“These new discoveries about the innermost part of the earth provide an explanation for the low velocity of the seismic waves deep down in the earth.

Children who have at least one parent who smokes have 5.5 times higher levels of cotinine, a byproduct of nicotine, in their urine, according to a University of Leicester led study published online.

Having a mother that smokes was found to have the biggest independent effect on cotinine in the urine – quadrupling it. Having a smoking father doubled the amount of cotinine, one of chemicals produced when the body breaks down nicotine from inhaled smoke to get rid of it.

Sleeping with parents and lower temperature rooms were also associated with increased amounts of cotinine.