Fake Banner
On A Roll

What? Another boring chess game?Buzz off, this is my blog, and if I feel like posting a chess game...

When The Attack Plays Itself

After a very intense day at work, I sought some relaxation in online blitz chess today. And the...

Toponium Found By CMS!

The highest-mass subnuclear particle ever observed used to the the top quark. Measured for the...

The Problem With Peer Review

In a world where misinformation, voluntary or accidental, reigns supreme; in a world where lies...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
A hadron collider is a really nice toy to play with. Sometimes when I look at all those scientists busying themselves with the design, the construction, and the operation of the Large Hadron Collider and its experiments, as well as the analysis of the produced data, all I see are kids who play with their toys - bigger toys, as big as possible in fact, because their craving is always growing and cannot be satiated.

I of course see myself that way, too. To me my job is a game -well, I see my life that way too!  But I am divagating into philosophical observations which deserve another place to be discussed. Instead, here I want to show you why I think these detectors are marvelous toys. Give a look at the graph below, courtesy ATLAS.

Note: I have discussed today's topic in one of my best articles here some time ago, and I also gave even more technical insight in another piece. I decided to revisit the topic once more under the stimulus of a online HEP magazine, which is going to feature a text of mine soon. They do not care if I use the same text here too, so you get to read it here first.
Despite the hopes of most and the preconceptions of many, news from the Lepton-Photon conference in Mumbay, India, report that the Standard Model is as alive and strong as it has ever been. Indeed, the recent searches for Supersymmetry by ATLAS and CMS, now analyzing datasets that by all standards must be considered "a heck of a lot of data", have returned negative results and have placed lower limits on sparticle masses at values much larger than those previously investigated (by experiments at the Tevatron and LEP II).
If you work in experimental high-energy physics you soon acquire a particular sensitivity to the economical display of relevant information. Producing figures that convey the most meaning with the minimum effort is sort of an art, and it is a necessary consequence that HEP experimentalists -the smart ones- end up converging on the definition of graphs which are better than all others in this respect.
"In a world of string theory, I can be the Pope [...]. I just need to modify dilatonic Einstein-Gauss-Bonnet theory with low-energy heterotic string theory and it's all quite easy."

H. Campbell


I have written enough today about the topic of Higgs boson searches at the LHC by discussing the new ATLAS limits (see previous post), but I feel that, before going to bed, I need to point out the new results on the same topic by CMS, the competitor experiment. As you know, I work in CMS and I have to be twice as cautious when I write about the results of my own experiment, because some of my colleagues have uncovered nerves when it comes to blogs. However, the little I'll say here tonight should cause no discomfort to anybody.