Fake Banner
Holiday Chess Riddle

During Christmas holidays I tend to indulge in online chess playing a bit too much, wasting several...

Why Measure The Top Quark Production Cross Section?

As part of my self-celebrations for XX years of blogging activities, I am reposting here (very)...

The Buried Lottery

As part of my self-celebrations for having survived 20 years of blogging (the anniversary was a...

Twenty Years Blogging

Twenty years ago today I got access for the first time to the interface that allowed me to publish...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
I thought it would be good to let you readers of this column know that in case you wish to order the book "Anomaly! Collider Physics and the Quest for New Phenomena at Fermilab" (or any other title published by World Scientific, for that matter) you have 10 more days to benefit of a 35% discount off the cover price. Just visit the World Scientific site of the book and use the discount code WS16XMAS35).
I am spending a week in Israel to visit three physics institutes for colloquia and seminars: the Tel Aviv University (where I gave a colloquium yesterday), the Haifa Technion (where I am giving a seminar today), and the Weizmann institute in Rehovot (where I'll speak next Wednesday).
Today I am actually quite proud of my research institute, the "Istituto Nazionale di Fisica Nucleare, INFN, which leads Italian research in fundamental physics. In fact a selection to hire 73 new researchers with permanent positions has reached its successful conclusion. Rather than giving you my personal opinions (very positive!) I think it is better to let speak the INFN president Fernando Ferroni, and the numbers themselves.
During the past few months I have been giving seminars and colloquia in several institutes around Europe and the US. The topic was more or less always the same, i.e. the discovery criterion used in fundamental physics to decide whether to claim for the observation of a new phenomenon. We set this at 5-sigma -that's, e.g., how the Higgs boson has been discovered in 2012. This is an arbitrary choice, and there is a lot to learn from a study of the history of how the criterion became an established practice, and from the statistical issues it entails.
Here is a list of the past events:

- Oslo University, October 26
- LIP Lisbon, October 27
- SLAC laboratory, November 8
- Northwestern University, November 11
- Royal Holloway University London, November 30
Today while I was having a shower I happened to think at how cool it is that we can actually measure the rate of production, in single hadron-hadron collisions, of multiple elementary particles. A graph like the one below, now routinely produced by ATLAS and CMS whenever they collect more data or switch to a higher center-of-mass energy, looks "natural" to produce, but it is actually surprising that we indeed can pull it off - it requred careful design choices in a number of ways. I wish to discuss one of these here.

In any physicists' new-year wish list there is a mandatory item: the finding of some unexpected, bolt-from-the-blue new physics result - possibly leading to highly-cited publications, press interviews and invitations, and ultimately career advancements or other similar ego boosts. Because we do it for the progress of mankind and the furthering of human knowledge, but we also do it for ourselves- we are human beings too.