Fake Banner
Holiday Chess Riddle

During Christmas holidays I tend to indulge in online chess playing a bit too much, wasting several...

Why Measure The Top Quark Production Cross Section?

As part of my self-celebrations for XX years of blogging activities, I am reposting here (very)...

The Buried Lottery

As part of my self-celebrations for having survived 20 years of blogging (the anniversary was a...

Twenty Years Blogging

Twenty years ago today I got access for the first time to the interface that allowed me to publish...

User picture.
picture for Hank Campbellpicture for Heidi Hendersonpicture for Bente Lilja Byepicture for Sascha Vongehrpicture for Patrick Lockerbypicture for Johannes Koelman
Tommaso DorigoRSS Feed of this column.

Tommaso Dorigo is an experimental particle physicist, who works for the INFN at the University of Padova, and collaborates with the CMS and the SWGO experiments. He is the president of the Read More »

Blogroll
One of the nice things about the 2012 discovery of the Higgs boson is that the particle has been found at a very special spot - that is, with a very special mass. At 125 GeV, the Higgs boson has a significant probability to decay into a multitude of different final states, making the hunt for Higgs events entertaining and diverse.
On these hot days of August one is led to remember the lyrics of Elton John's 1972 hit "Rocket Man": "and all that science I don't understand... It's just my job five days a week". Indeed, being a scientist should not be considered a mission, something you work at 24 hours a day, seven days a week. We do have our lives and attend to them... more or less.
Exotic baryons, what are they ? But first of all, what is a baryon ? Well, it depends whom you ask the question to. In the context of the static quark model, a baryon is a particle composed of a triplet of quarks, as opposed to a meson, which is a particle composed of a quark-antiquark pair. But the quark model is fifty years old, and nowadays we know better: baryons and mesons do not just contain a triplet or a duo of quarks; they are in fact a soup of quarks and gluons. What is still true is that their intrinsic properties are distinguished by the _valence_ quarks they contain.
Meteorites - stones that fall on Earth from space - are quite rare, but not so much as to make their possession impossible. In fact I know a few collectors of these strange bits of matter; and I find the very strange-looking stones quite fascinating. I myself own a small piece of tectite fallen somewhere in South Africa a few decades ago; but it is just an odd bit in a larger collection of minerals and crystals that formed on Earth (yes, I find those even more fascinating; but that's just me).
The 13 TeV data from LHC collisions taken this summer is quickly going through analysis programs and being used for new physics results, and everybody is wondering whether there are surprises in store... Of course that will require some more time to be ascertained.
For the time being, I can offer a couple of very inspiring pictures. CMS recorded a spectacular event featuring two extremely high-energy jets in the first 40 inverse picobarns of data that was collected and reconstructed by the experiment with all detector component properly working.
Are you a post-lauream student in Physics, interested in pursuing a career in particle physics, and maybe with interest in advanced machine learning applications, with an eye to a great job after your PhD ? Then this posting is for you.