The reason why CDF took it easy is that at the Tevatron this is really not the most sensitive way to search for a standard model Higgs boson: the Higgs decay to a pair of photons is predicted to be quite rare -only one in a thousand or so; and the Tevatron, however a lucky place for particle physics, is not an efficient factory of Higgs bosons. So rarity is a real hindrance in this case.
Rudiments of the Higgs decay to photon pairs
Rather than why the Higgs decays so infrequently to photon pairs, one would be more justified to ask why it decays that way at all. In fact, the Higgs particle interacts with other elementary bodies in measure proportional to the mass of these; thus the photon, having zero mass, cannot have any business with the Higgs! The argument can even be turned around: photons interact with elementary particles only by virtue of the electric charge those possess: and the Higgs boson is neutral, so there can be no direct coupling among them.
The key word here is "direct". In fact, the way the Higgs boson can indeed disintegrate in a double flash of energetic light quanta is via an indirect quantum process. It is quite instructive to examine it, so let me do it here very briefly.

instead of leaving the crime scene lingers around, and produces a virtual loop. This loop is bound to radiate out again the energy it borrowed from the energy of its originating Higgs boson: and it can do so by emitting a pair of photons! This is what is described by the Feynman diagram on the right.
Of course, the process whereby a top quark radiate a photon is governed by the rules of quantum electrodynamics. In particular, each "top-photon" vertex has a probability of occurring which depends on the "fine structure" constant,


Now take instead the quantum-chromodynamical radiation of a pair of gluons from the top quark loop: this is governed by very similar physics considerations, and -except from some proportionality constant- the only difference with photon pair emission is that now we must use

Since



The different branching fraction of the Higgs boson to gluon pairs and photon pairs can be checked on the graph below, which shows how the two have a quite similar behaviour as a function of the unknown mass of the Higgs boson: the probability peaks at about 120 GeV, to then decreases rapidly because of the strong competition from the direct decay of the Higgs to W boson pairs, which at high mass becomes the most frequent mode of disintegration.

The red "bump" at the bottom left is the one describing the probability of a decay to diphotons; the brown one sitting 30 times above is the one sizing up the branching ratio to gluon pairs.
Once we have sized up the Higgs branching ratio of interest, we can more meanginfully go back to computing how many decays to photon pairs one might expect CDF to collect in its 5-femtobarn dataset: the one-in-a-thousand branching fraction is understood.
The calculation is easy to do on the back of an envelope: with five inverse femtobarns of collisions, and with a total Higgs boson cross section of one picobarn (=1000 femtobarns), one expects to have produced of the order of

Five is a nice number, but it is small if compared to the large number of events yielding photon pairs from sources totally unrelated to Higgs boson production. And it becomes even smaller when one considers that the detector efficiency to correctly identify a energetic photon is smaller than 100%.

The surprise doubles if you consider that this detector was built in the early eighties -over 25 years ago!! Now, admittedly the progress in electromagnetic calorimetry in these 25 years has not been overwhelming; and yet, the excellent resolution for a Higgs decay to two photons that CDF may boast in the figure below is indeed quite pleasing: 2.4% !

The histogram above is obtained by a Monte Carlo simulation of Higgs decays to photon pairs. CDF can claim that the prediction is correct based on the extreme care with which the simulation is tuned on experimental data: and not just proton-antiproton collisions but critically, test-beam results performed a long time ago!

A couple of words on the detection of photons
So the energy of photons is measured well in the CDF calorimeter. To understand how the measurement is done, we need to discuss for a second the physics of the interaction of photons with matter.
Photons, also known as gamma rays, do not leave a signal in the inner tracking system of CDF -a combination of silicon detectors and a multi-wire chamber- because they are electrically neutral: most of them traverse without interacting the five thin layers of silicon, and a fortiori the gas vessel. They also do not get deflected by the strong magnetic field: so they plunge straight into the dense layers of lead which make up the electromagnetic calorimeter; in the photograph above, they enter from the bottom of the wedge, traveling upwards.




There is a lesson to take home from the study of the above physical processes: if the energy is proportional to N, and if N is governed by Poisson statistics, as it is, then since the typical fluctuation of N is its square root, we get that the uncertainty in the energy of the photon scales with the square root of the energy! This so-called "stochastic term" in the energy resolution is what dominates the 2.4% resolution on the Higgs boson mass shown above -a critical number for this search!
The CDF analysis
There are many details in the CDF analysis, but most of them need not concern us here. The critical thing is to manage to select a sample of events with two energetic photons as pure as possible. Purity is essential, because the signal is tiny!
The detection and measurement of a energetic photon therefore implies the following ingredients: a localized, large release of energy in the electromagnetic calorimeter; and no charged tracks pointing at the energy deposit. The requirement that the energy "cluster" be isolated from nearby activity also helps rejecting background from hadronic jets. A candidate diphoton event is shown in the event display below.

On the left you see a transverse cut-away of the CDF detector. The central tracking system, which lies at the center of the circle, sees no charged tracks at all -in particular, none pointing at the purple energy deposits in the calorimeter. On the right, you see the calorimeter "unrolled" along the rapidity axis, with the two clean energy towers sticking out. This is most likely a clean diphoton event, but backgrounds are nasty, and photons are rare objects in hadron collisions: the possibility that the two photon candidates are the result of the fragmentation of two quarks, leading to mostly neutral particles, is significant.
So backgrounds are an issue. But they cannot really be separated much from the signal after clean photon candidates are selected. The search, in fact, does not employ an ultra-sophisticated multi-dimensional method to enrich the sample with signal. All that can be done is to search the invariant mass distribution of pairs of photons for a narrow bump! In fact, most of the selected events are contributed by QCD background.
The method to assess the presence of a Higgs decay in the data is to exclude a narrow window in the mass distribution, fit the background shape with a suitable parametrization, and then extrapolate and compare the expectation in the signal window with what is actually observed. This method is described graphically in the figure below.

The black histogram shows how the diphoton candidate mass for experimental data is distributed. The red curve is a fit which excludes the mass region around 120 GeV,which is where the signal is sought in this particular case. A comparison of the counts expected for the background with the actual number of events seen in the excluded window provides a test for the presence of an excess of Higgs decays.
Unfortunately, there are no excesses anywhere in the spectrum. Of course! CDF did not in fact expect to see any, at least not from standard model production of Higgs bosons. In fact, the search is not sensitive enough to detect five events! Still, a signal 20 times larger would have produced a detectable deviation. This is not observed, so the authors proceeded to place 95% confidence level limits on the rate of Higgs production entering their selection. What they actually do is to divide the limit found on the signal cross section by the expected cross section for Higgs production. The limit is thus on the "R ratio", which -if it went below 1.0- would imply that the standard model Higgs boson is non-existent at that mass value. No such thing happens, of course: the limit is at R=20 or above, as shown below.

The observed limit is shown by the black squares, and it agrees well with the one that the authors expected to obtain, given the methodology of the analysis and the size of the analyzed dataset.
A last figure, which clarifies how the signal would look like in the mass distribution if its production rate was much larger than the standard model expectation, is provided below.

Here the signal is shown in red. The background is in grey, and the CDF data are shown with black points with error bars. The signal shown corresponds to the one that CDF was able to exclude at 95% confidence level, for a Higgs mass of 120 GeV: it is about 20 times what the standard model predicts.
This analysis fills a visible gap in the spectrum of Higgs boson searches that the CDF collaboration has performed with its first five inverse femtobarns of collected proton-antiproton collisions. I am thus very pleased to congratulate with the authors: Karen Bland, Ray Culbertson, Jay Dittmann, Craig Group, and Jamie Ray. Those of you willing to get more details on the search and a public document describing the nitty-gritty details are advised to please follow this link.
Comments