Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Researchers at Hospital for Special Surgery (HSS) have uncovered a potential genetic trigger of systemic autoimmune disease. The study, the culmination of more than 10 years of research and published online in the journal Arthritis & Rheumatology in June, discovered virus-like elements within the human genome linked to the development of two autoimmune diseases: lupus and Sjogren's syndrome.

An autoimmune disorder occurs when the body's immune system malfunctions. Instead of protecting the body, it attacks and destroys healthy organs. More than 80 types of autoimmune disorders, including rheumatoid arthritis, lupus and Sjogren's syndrome, affect up to 22 million people in the United States, according to the National Institutes of Health.

A team of New York-based researchers has compared the effects of two disease-causing mutations, potentially explaining why patients with the rare genetic disorder keratitis-ichthyosis-deafness (KID) syndrome can experience different sets of symptoms. The study, "Syndromic deafness mutations at Asn 14 differentially alter open stability of Cx26 hemichannels," will be published online June 27, 2016 in The Journal of General Physiology.

Bumble bees have discriminating palettes when it comes to their pollen meals, according to researchers at Penn State. The researchers found that bumble bees can detect the nutritional quality of pollen, and that this ability helps them selectively forage among plant species to optimize their diets.

"Populations of many bee species are in decline across the world, and poor nutrition is thought to be a major factor causing these declines," said Christina Grozinger, director of the Center for Pollinator Research, Penn State. "Our studies can help identify plant species and stocks that provide high-quality nutrition for bumble bees and potentially other bee species, which will help in the development of pollinator-friendly gardens and planting strips."

The era of quantum computers is one step closer as a result of research published in the current issue of the journal Science. The research team has devised and demonstrated a new way to pack a lot more quantum computing power into a much smaller space and with much greater control than ever before. The research advance, using a 3-dimensional array of atoms in quantum states called quantum bits -- or qubits -- was made by David S. Weiss, professor of physics at Penn State University, and three students on his lab team.

An international research collaboration led by UCL scientists has developed ways to improve the quality and accuracy of information harvested from epigenome sequencing datasets in two new research papers published jointly in Nature Biotechnology and Nature Communications today. According to the studies, epigenome sequencing technologies can allow for more comprehensive analysis of cancers - a key component in the development of targeted approaches to combat cancer.

In a partnership melding neuroscience and electrical engineering, researchers from UNC-Chapel Hill and NC State University have developed a new technology that will allow neuroscientists to capture images of the brain almost 10 times larger than previously possible - helping them better understand the behavior of neurons in the brain.

Nervous systems are complex. After all, everything that any animal thinks or does is controlled by its nervous system. To better understand how complex nervous systems work, researchers have used an expanding array of ever more sophisticated tools that allow them to actually see what's going on. In some cases, neuroscience researchers have had to create entirely new tools to advance their work.