Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Using a modified ink-jet printer, a McGill University researcher is producing three-dimensional bioceramic “bones” that could one day change the way reconstructive surgery is performed.

McGill professor Jake Barralet, Canada Research Chair in Osteoinductive Biomaterials, Charles Doillon of Université Laval and Uwe Gbureck of the Department for Functional Materials in Medicine and Dentistry at the University of Würzburg, Bavaria, have taken advantage of the ink-jet printer’s ability to print layer upon layer to produce three-dimensional porous materials using the same building blocks as real bone.

Frog skin and human lungs hold secrets to developing new antibiotics, and a technique called solid-state NMR spectroscopy is a key to unlocking those secrets.

That's the view of University of Michigan researcher Ayyalusamy Ramamoorthy, who will discuss his group's progress toward that goal March 3 at the annual meeting of the Biophysical Society in Baltimore, Md.

Ramamoorthy's research group is using solid-state NMR to explore the germ-killing properties of natural antibiotics called antimicrobial peptides (AMPs), which are produced by virtually all animals, from insects to frogs to humans. AMPs are the immune system's early line of defense, battling microbes at the first places they try to penetrate: skin, mucous membranes and other surfaces.

TOKYO 02/03/2007

Japan's advanced humanoids can now serve tea and wash the cup afterwards, but they still need to learn from their mistakes if they are to become real household helpers.

A Tokyo University team this week showed their latest robots which can perform more complicated daily tasks, but the machines still have a learning curve.


Japan's advanced humanoids can now serve tea and wash the cup afterwards, but they still need to learn from their mistakes if they are to become real household helpers. © AFP,Ken Shimizu

The European Molecular Biology Laboratory [EMBL] has developed a new computational tool that makes images obtained with cutting-edge microscopes even sharper. The technological advance and its applications are published in this week's online issue of the journal Nature Methods.

Since the Single Plane Illumination Microscope [SPIM] was developed at EMBL in the early 2000s it turned into one of the most powerful tools in cell biology. SPIM allows scientists to study large, living specimen along many different angles, under real conditions and with minimal harm to the specimen.

Brain damage that was thought to be caused by hypoglycemic coma actually occurs when glucose is administered to treat the coma, according to a study in rodents led by researchers at the San Francisco VA Medical Center.

The results are surprising, say the authors, and may be of clinical significance for the treatment of diabetics in hypoglycemic coma, though they caution that the results cannot be immediately extrapolated to humans.

By analyzing the COSMOS field, the largest field of galaxies ever observed with the Hubble space telescope, an international team of scientists led by researchers from the California Institute of Technology (United States) and researchers from the associated laboratories of the CNRS and the CEA , made the first three-dimensional map of dark matter in the Universe using gravitational lensing effects. This historic first seems to confirm the standard theories on the formation of the large structures of the Universe. This study was presented in the January 7, 2007 issue of the journal "Nature."


Three-dimensional map of black matter in the COSMOS field. © ESA/NASA