Our bodies, and the biological brilliance built in, are able to move with elegance and efficiency using a combination of appropriate biomechanics, neuronal control, and adaptivity.

Simulating that with technology has so far eluded technological advances because of the motor coordination of complex multi-joint movements and the complicated nature of their dynamics.

Yet now scientists at the University of Göttingen have simulated the neuronal principles that form the dynamics of human walking in a robot.

"RunBot", as it is called, lives up to its name – it holds the world record in speed walking for dynamic machines. Now its inventors have expanded its repertoire. With an infrared eye it can detect a slope on its path and adjust its gait on the spot.

Scientists say that using data from the Mars Express mission and numerical models they can determine how the orbit of Mars around the Sun accounts for the origin and perennial occurrence of water ice at the Martian South Pole.

The OMEGA instrument on board Mars Express had already found previously undetected perennial deposits of water-ice sitting on top of million-year old layered terrains and those provided strong evidence for recent glacial activity.


The OMEGA instrument on board ESA’s Mars Express has characterised the types of ice deposits present in the South polar cap of Mars as the arrows, superimposed on an image taken by the HRSC instrument, indica

A unique set of observations, obtained with ESO's VLT, has allowed astronomers to find direct evidence for the material that surrounded a star before it exploded as a Type Ia supernova. This strongly supports the scenario in which the explosion occurred in a system where a white dwarf is fed by a red giant.

Because Type Ia supernovae are extremely luminous and quite similar to one another, these exploding events have been used extensively as cosmological reference beacons to trace the expansion of the Universe.


Left: artist's impression of the favoured configuration for the progenitor system of SN2006X before the explosion.

Volcanologist Sarah Fagents from the University of Hawaii at Manoa had an amazing opportunity to study volcanic hazards first hand, when a volcanic mudflow broke through the banks of a volcanic lake at Mount Ruapehu in New Zealand.

Fagents and colleagues were there on a National Science Foundation (NSF)-funded project to study the long-forecast Crater Lake break-out lahar at Mount Ruapehu.

A research team headed by Yadong Yin at the University of California, Riverside has created a liquid that changes its color “on demand” and can take on any color of the rainbow.

Nanoscopic particles made of tiny magnetic crystals coated with a plastic shell self-assemble in solution to form photonic crystals—semiconductors for light. When a magnetic field is applied, the optical properties of the crystals change, allowing their color to be very precisely adjusted through variation of the strength of the field.

The crystals involved are not “conventional” lattices of ions or molecules like the ones for salt. They are colloidal crystals, periodic structures that form from uniform solid particles that are finely dispersed in a liquid.

Dr. Éric A. Cohen, Director of the Human Retrovirology Research Unit at Institut de recherches cliniques de Montréal, and his team have published a discovery that could lead to the development of a new class of drugs to combat HIV.

Human immunodeficiency virus type 1 (HIV-1) causes AIDS by depleting essential immune cells called CD4+T lymphocytes in infected individuals, resulting in a compromised immune system. At the center of this process is the HIV protein, viral protein R (Vpr), which stops infected CD4+T cells from dividing and as a consequence compromises their immune function.

In addition, by arresting cell division, Vpr helps HIV to harness the infected cell’s resources to enhance viral replication.

When a strand of DNA breaks in the body's cells, it normally does not take long until it has been repaired. Now researchers at the Swedish medical university Karolinska Institutet have discovered a new mechanism that helps to explain how the cell performs these repairs.

The new results examine a phenomenon called 'cohesion', whereby two copies of a chromosome in the cell nucleus are held tightly together by a protein complex called cohesin. Cohesion fulfils an important function during cell division as the newly copied chromosomes, the sister chromatids, have to stay together until the right moment of separation. If the chromatids come apart too early, there is a risk of the daughter cells getting the wrong number of chromosomes, something that is often observed in tumor cells.

In an experiment modeled on the classic “Young’s double slit experiment” and published in the journal Nature Nanotechnology, researchers have powerfully reinforced the understanding that surface plasmon polaritons (SPPs) move as waves and follow analogous rules.

The demonstration reminds researchers and electronics designers that although SPPs move along a metal surface, rather than inside a wire or an optical fiber, they cannot magically overcome the size limitations of conventional optics.

Touted as the next wave of electronics miniaturization, plasmonics describes the movement of SPPs -- a type of electromagnetic wave that is bound to a metal surface by its interaction with surface electrons.

Chitin and Chitosan have been extracted from lobster waste and used in medicine and biomedicine by a team from the University of Havana. These researchers’ work has led to the development of a procedure to obtain surgical materials with great healing and antiseptic properties.

Chitin is a polymer very common in nature as part of animals’ and plants’ physical structures. Only cellulose is more abundant than chitin, which makes this compound a highly important renewable resource that can easily be found in arthropods, insects, arachnids, molluscs, fungus and algae.

Just in time for the weekend, this study from Dutch researcher Ingmar Franken says that while alcohol does not make good things any better it can make bad things a lot less worse. Previously researchers thought that alcohol primarily affected the 'reward' system in the brain. Franken found that was not so.

In the case of pleasant experiences alcohol was found to have hardly any influence. The ‘rosy glasses’ that alcohol is said to cause is therefore just a temporary filter for the more 'sober' issues in life.