Antimatter is made up of antiparticles in the same way that normal matter is made up of particles.
Antihydrogen, for instance, is the simplest atom comprised entirely of antiparticles, with an antiproton as a nucleus and a positron in place of the electron normally found in ordinary hydrogen.
Now a Swansea University physicist is leading a project worth more than £835,000, which could change our understanding of the structure of the Universe. Professor Mike Charlton has been awarded a five-year Senior Research Fellowship by the Engineering and Physical Sciences Research Council (EPSRC). The Fellowship will now enable him to dedicate his time entirely to research, and the project’s aim is to make the first measurements of the properties of antimatter.
Professor Charlton said: “Our current view of how the Universe began involves the Big Bang, which is said to have created equal amounts of matter and antimatter.
“If, as is commonly believed, matter and antimatter cancel each other out, why did all these particles not annihilate each other and leave the Universe devoid of matter?
“By understanding and measuring the properties of antimatter, we hope to draw new conclusions about the very nature of the Universe.”
Although the research project is concerned with the production and trapping of antimatter under laboratory conditions, there is a much larger goal behind the project’s experimental remit.
“Our research, in a very real sense, could change our understanding of how the Universe is made up and perhaps shed new light on how it came into being,” added Professor Charlton.
Professor Charlton was awarded the EPSRC Senior Research Fellowship as a result of the leading role that he and his colleagues at Swansea University have made in the area of antimatter research.
He was part of the ATHENA team that first produced antimatter in the form of antihydrogen, a ground-breaking project that is generally regarded as having started a whole new field in atomic physics.
The antihydrogen project was listed as one of the 15 most significant projects to have been supported by the EPSRC in their first decade.
“The Fellowship allows us to progress to the next stage where we can actually make measurements on the antimatter,” said Professor Charlton, who has been a physicist for around 30 years.
“I am very fortunate to be given this opportunity through the funding to go back to my experimental roots.
“Swansea has unquestionably played a major role in the field of antihydrogen research. The project has already taken 10 years to get to where we are now and there is probably a further 20 years of research ahead. This is a new branch of atomic physics that will continue to be explored for many years to come.”
- Swansea University
Comments