The structure of an asymmetrical ABC transporter complex has been determined with the aid of a high-resolution cryo-electron microscope.
ABC transporters cause bacteria and other pathogens to become resistant to antibiotics. They can also help cancer cells to defend themselves against cytostatic agents and thus determine whether chemotherapy will succeed.
"ABC transporters causes diseases such as cystic fibrosis, while on the other hand they are responsible for the immune system recognising infected cells or cancer cells," explains Professor Robert Tampé from the Institute for Biochemistry at the Goethe University.
The researchers report in the current issue of the renowned scientific journal, Nature that they have succeeded in investigating a single frozen ABC transport complex at a subnanometer resolution that has never before been achieved. For this purpose, they used a newly developed single electron camera, new imaging processes and specific antibody fragments in order to determine the structure and conformation of the dynamic transport machine.
"The combination of physical, biotechnological, biochemical and structural biological methods has led to a quantum leap in the elucidation of the structure of macromolecular complexes," says Tampé. The method facilitates the targeted development of a trend-setting therapeutic approach.
Comments