New research hopes to create reactions necessary for industries such as pharmaceutical companies but eliminate the resulting waste from traditional methods. 

Traditional methods – dating back thousands of years – involve using solutions to speed up chemical reactions that are used to make products that we use every day. However, the leftover waste or solvents can often be a volatile compound.

Disposal and recycling is also becoming a growing and more costly challenge for companies as they follow increasing federal environmental regulations.

Instead of using solutions to create chemical reactions needed to manufacture products such as detergents, plastics and pharmaceuticals, Mack is using a physical catalyst – high-speed ball-milling – to force chemicals to come together to create these reactions. The mechanochemistry not only eliminates waste, but also is showing more success than liquids at forcing chemical reactions.

"The solvents comprise the large majority of chemicals that are handled, but the solvent doesn't do anything but serve as a mixing vehicle. For example, for every gram of pharmaceutical drug that is generated, 15 to 20 kilograms of solvent waste is generated in that process," says  James Mack, a University of Cincinnati associate professor of chemistry, who will present this research into greener chemistry on April 9, at the annual meeting of the American Chemical Society in New Orleans. "Mechanochemistry can develop new reactions that we haven't seen before, saving on waste and developing new science."

Mack also used a metal reactor vial to create chemical reactions, allowing recovery of the catalyst used to make the reaction, which usually can't be achieved by using solutions, and is exploring efforts at using natural chiral agents – agents that are non-superimposable, mirror images of each other – to successfully mix chemicals and eliminate waste such as oil.