A new paper has found that inhibiting or blocking stem cells ability to make a specific decision, leads to better cell growth and could lead to defined ways to differentiate stem cells.

Th authors say their research is the first comprehensive analysis of a pathway important for stem and cancer cell decisions known as Erk. As a result, they hope the work could contain clues to cancer treatment as well as helping to establish a platform to make stem cell treatments for gut related disorders like the pancreas or the liver. 


As embryonic stem cells can become any cell type in the body, they have to make choices. Based on this research, it appears that blocking these choices is the key to making them grow as stem cells. In other words, if these choices are removed the cells simply reproduce more stem cells.


"If you block all the choices they can make, they stay in the stem cell state. If you only allow them one door to exit from the stem cell state, you should be able to make particular cell types more efficiently. So if you only leave one door open then it's the path of least resistance and when you give them a push they really go," says Professor Joshua Brickman of the Danish Stem Cell Center (Danstem) at the University of Copenhagen. 


In an embryo, cells like embryonic stem cells exist very briefly, quickly differentiating into other cell types that will go on to make the entire organism. This new study shows that chemicals traditionally used to grow embryonic stem cells act to block different choices that they would normally make. By blocking these choices, scientists can then transform these cells from the embryo into embryonic stem cells and grow them indefinitely in a dish.

"This creates an intellectual framework to help establish tissue techniques for other stem cells populations and represents a new paradigm for how we think about embryonic stems cells and how we maintain them," says Postdoc William Hamilton from DanStem.

By forcing a cell to go through a particular door by virtue of closing all the other doors, the scientists know need to know what the door is. "On a scientific level we would now like to know what the lock and key looks like and then we can understand how many more doors there are," adds Professor Joshua Brickman.

 Published in Cell Reports.
Source: University of Copenhagen