Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

A team of University of Georgia researchers has developed a new biofuel derived from wood chips. Unlike previous fuels derived from wood, the new and still unnamed fuel can be blended with biodiesel and petroleum diesel to power conventional engines.

"The exciting thing about our method is that it is very easy to do," said Tom Adams, director of the UGA Faculty of Engineering outreach service. "We expect to reduce the price of producing fuels from biomass dramatically with this technique."


UGA researchers have developed a way to turn wood pellets such as these into fuel. Credit: Peter Frey/The University of Georgia

New evidence may help explain the brute strength of the tyrannosaurid, says a University of Alberta researcher whose finding demonstrates how a fused nasal bone helped turn the animal into a "zoological superweapon."

"Fused, arch-like nasal bones are a unique feature of tyrannosaurids," said Dr. Eric Snively, a post doctoral research fellow at the University of Alberta. "This adaptation, for instance, was keeping the T. rexes from breaking their own skull while breaking the bones of their prey."


Credit: University of Alberta

Scientists have observed the first evidence that the Southern Ocean's ability to absorb the major greenhouse gas, carbon dioxide, has weakened by about 15 per cent per decade since 1981.

In research published today in Science, an international research team – including CSIRO's Dr Ray Langenfelds – concludes that the Southern Ocean carbon dioxide sink has weakened over the past 25 years and will be less efficient in the future. Such weakening of one of the Earth's major carbon dioxide sinks will lead to higher levels of atmospheric carbon dioxide in the long-term.


The Bureau of Meteorology's Baseline Air Pollution Station at Cape Grim, north-west Tasmania. Credit: CSIRO Australia

Scientists supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) at the National Institutes of Health have created two mouse strains that will permit researchers to trace, in a live animal, the activity of an enzyme believed to play a crucial role both in the normal immune response as well as autoimmunity and B cell tumor development.


In this picture of intestinal villi from one of the new mouse strains, plasma cells are tagged with yellow (green-appearing) fluorescent protein. Credit: National Institute of Arthritis and Musculoskeletal and Skin Diseases

Researchers at the University of Illinois have constructed the first global family tree of metabolic protein architecture. Their approach offers a new window on the evolutionary history of metabolism.

Their work relies on established techniques of phylogenetic analysis developed in the past decade to plot the evolution of genes and organisms but which have never before been used to work out the evolutionary history of protein architecture across biological networks.

B12 is an essential vitamin for and also turns out to be an essential ingredient for growing marine plants that are critical to the ocean food web and Earth's climate, scientists have found.

The presence or absence of B12 in the ocean plays a vital and previously overlooked role in determining where, how much, and what kinds of microscopic algae (called phytoplankton) will bloom in the sea, according to a study published in the May issue of the journal Limnology and Oceanography.