Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Now that the genome sequences of hundreds of bacteria and viruses are known, we can design tests that will rapidly detect the presence of these species based solely on their DNA. These tests can detect a pathogen in a complex mixture of organic material by recognizing short, distinguishing sequences—called DNA signatures—that occur in the pathogen and not in any other species.

Adam Phillippy and colleagues from the University of Maryland, USA, have developed a computer program that can identify these signatures with a higher degree of accuracy than ever before. They describe this new computational system, called Insignia, and the results of its successful application on 46 Vibrio cholerae strains this week in the journal PLoS Computational Biology.

Up to 25,000 people may die needlessly each year due to the failure to prevent blood clots known as venous thromboembolisms (VTE) in UK hospitals, say experts in this week's BMJ.

Their warning follows the publication of official guidelines on the issue last month by the National Institute for Health and Clinical Excellence (NICE), which are also summarised in this week's journal.

Analyzing 30 years of data detailing a large rabies virus outbreak among North American raccoons, researchers at Emory University have revealed how initial demographic, ecological and genetic processes simultaneously shaped the virus's geographic spread over time. The study appears online in the Proceedings of The National Academy of Sciences.

"Our study demonstrates the combined evolutionary and population dynamic processes characterizing the spread of a pathogen after its introduction into a susceptible host population," says Leslie Real, PhD, Emory University Asa G. Candler professor of biology.

Illinois State University’s Board of Trustees today approved a new bachelor’s degree in renewable energy, which will include a technical sequence and an economics and public policy sequence.

The degree is a multi-disciplinary undergraduate major that provides a broad overview of renewable energy industries. Renewable energy is a fast-growing industry that will call for many new workers in the future.

Two astrophysicists at NASA’s Goddard Space Flight Center in Greenbelt, Md., Nikolai Shaposhnikov and Lev Titarchuk, have successfully tested a new method for determining the masses of black holes.

This elegant technique, which Titarchuk first suggested in 1998, shows that the black hole in a binary system known as Cygnus X-1 contains 8.7 times the mass of our sun, with a margin of error of only 0.8 solar mass.


CLICK IMAGE FOR LARGER VERSION.

Researchers at Rensselaer Polytechnic Institute have developed a new method to bond materials that don’t normally stick together. The team’s adhesive, which is based on self-assembling nanoscale chains, could impact everything from next-generation computer chip manufacturing to energy production.

Less than a nanometer – or one billionth of a meter – thick, the nanoglue is inexpensive to make and can withstand temperatures far higher than what was previously envisioned. In fact, the adhesive’s molecular bonds strengthen when exposed to heat.