Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Biology and chemistry researchers from Virginia Tech are creating molecular complexes to bind to and disrupt the DNA of diseased tissues, such as tumors or viruses. Testing the activity of each of the therapeutic molecule designs has been a time-consuming process. But a student’s invention now provides rapid screening to accelerate discovery of promising new drugs.

Aaron J. (A.J.) Prussin II of Blacksburg, Va., a second year student at Virginia Tech who is majoring in biochemistry and biology, with a minor in chemistry, has created an LED system that glows a beautiful shade of blue when the special molecules successfully bind to DNA.

For the first time, researchers have used adult bone marrow stem cells to regenerate healthy human liver tissue, according to a study published in the April issue of the journal Radiology.

When large, fast-growing cancers invade the liver, some patients are unable to undergo surgery, because removing the cancerous tissue would leave too little liver to support the body.

The Himalaya, the “Roof of the World”, source of the seven largest rivers of Asia are, like other mountain chains, suffering the effects of global warming. To assess the extent of melting of its 33 000 km2 of glaciers, scientists have been using a process they have been pioneering for some years. Satellite-imagery derived glacier surface topographies obtained at intervals of a few years were adjusted and compared. Calculations indicated that 915 km2 of Himalayan glaciers of the test region, Spiti/Lahaul (Himachal Pradesh, India) thinned by an annual average of 0.85 m between 1999 and 2004. The technique is still experimental, but it has been validated in the Alps and could prove highly effective for watching over all the Himalayan glacier systems.

Some day, heart attack survivors might have a patch of laboratory-grown muscle placed in their heart, to replace areas that died during their attack. Children born with defective heart valves might get new ones that can grow in place, rather than being replaced every few years. And people with clogged or weak blood vessels might get a new “natural” replacement, instead of a factory-made one.

These possibilities are all within reach, and could transform the way heart care is delivered, say University of Michigan Medical School researchers in the new issue of the journal Regenerative Medicine.

The validity of a leading theory that has held a glimmer of hope for unraveling the intricacies of the brain has just been called into question. Dr. Ilan Lampl of the Weizmann Institute of Science's Neurobiology Department has produced convincing evidence to the contrary. His findings recently appeared in the journal Neuron.

Cells in the central nervous system tend to communicate with each other via a wave of electrical signals that travel along neurons. The question is: How does the brain translate this information to allow us to perceive and understand the world before us?

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory are trying to design catalysts inspired by photosynthesis, the natural process by which green plants convert sunlight, water, and carbon dioxide into oxygen and carbohydrates. The goal is to design a bio-inspired system that can produce fuels like methanol, methane, and hydrogen directly from water and carbon dioxide using renewable solar energy. Four Brookhaven chemists will discuss their research on this so-called "artificial photosynthesis" at the 233rd National Meeting of the American Chemical Society.