Banner
What Next For Messenger RNA (mRNA)? Maybe Inhalable Vaccines

No one likes getting a needle but most want a vaccine. A new paper shows progress for messenger...

Toward A Single Dose Smallpox And Mpox Vaccine With No Side Effects

Attorney Robert F. Kennedy Jr. and his US followers over the last 25 years have staunchly opposed...

ChatGPT Is Cheaper In Medicine And Does Better Diagnoses Even Than Doctors Using ChatGPT

General medicine, routine visits and such, have gradually gone from M.D.s to including Osteopaths...

Even After Getting Cancer, Quitting Cigarettes Leads To Greater Longevity

Cigarettes are the top lifestyle risk factor for getting cancer, though alcohol and obesity have...

User picture.
News StaffRSS Feed of this column.

News Releases From All Over The World, Right To You... Read More »

Blogroll

Modern man"s earliest known close ancestor was significantly more apelike than previously believed, a New York University College of Dentistry professor has found.

A computer-generated reconstruction by Dr. Timothy Bromage, a paleoanthropologist and Adjunct Professor of Biomaterials and of Basic Science and Craniofacial Biology, shows a 1.9 million-year-old skull belonging to Homo rudolfensis, the earliest member of the human genus, with a surprisingly small brain and distinctly protruding jaw, features commonly associated with more apelike members of the hominid family living as much as three million years ago.


IADR 2007 Conference Poster Dr. Timothy G.

Researchers at the University at Buffalo have described a novel pathway by which estradiol, the primary estrogen in humans, aids in maintaining bone density, a function critical to avoiding osteoporosis.

It is well known that estrogen is essential for healthy bone, and that when the production of estrogen is reduced, as occurs normally in postmenopausal women and pathogenically after exposure to radiation or chemotherapeutic drugs, bones become brittle and break easily. However, the mechanisms involved aren’t clearly understood.

Tissue engineering has emerged as a promising alternative for the reconstitution of lost or damaged organs and tissues, circumventing the complications associated with traditional transplants. Tissue engineers attempt to repair or regenerate damaged tissue by using engineered tissue substitutes that can sustain functionality during regeneration and eventually integrate into the host tissue. The traditional tissue-engineering paradigm combines isolated cells with appropriate bioactive agents in a biomaterial scaffold.

More powerful computers are allowing scientists and engineers to conduct simulations that grow more realistic each year. While companies are using these tools to slash the costs of producing everything from airliners to antibiotics, researchers in Houston are using them to refine their search for the genetic causes of disease.

Factoring in crustal strength changes along the San Andreas Fault would improve the predictive models that researchers use to understand the likelihood and intensity of earthquakes there. That's the conclusion from a study published in the April issue of Geology titled, "Diffuse interseismic deformation across the Pacific-North America plate boundary."
 

Investigators at St. Jude Children's Research Hospital have mapped out many of the dynamic genetic and biochemical changes that make up a cell's response to a shortage of a molecule called Coenzyme A (CoA), a key player in metabolism. The results provide the most detailed look ever obtained of the complex metabolic changes in a cell triggered by a potentially fatal stress.

Metabolism is the sum of all biochemical reactions involved in maintaining the health of the cell, including breaking down and synthesizing various molecules to produce energy and build substances the cell needs to operate normally. CoA plays key roles in the cell's metabolism by participating in biochemical reactions in specific areas throughout the cell.