
Some of you might remember the ripples caused in the blogosphere by the two-standard-deviation excess found by the CDF collaboration in their data in January 2007, while searching for a Higgs boson of the Minimal Supersymmetric extension of the Standard Model (MSSM). The search, led by my colleague physicist and blogger John Conway, had focused on the Higgs decay to a pair of tau leptons. To Conway's bewilderment, a small but nagging bump had indeed appeared in the invariant mass of two tau candidates in the data, corresponding to a Higgs mass of 160 GeV (right, in yellow).
The story has been told several times: while commenting Conway's intriguing result, I made the point that if the bump were really due to a supersymmetric Higgs boson -a fact enormously less likely than the alternative hypothesis of being due to a statistical fluctuation-, then a similar signal should have been present in a plot I had recently produced, again with CDF data but in a different distribution: events containing pairs of b-quark jets.


I was writing these comments tongue-in-cheek, since it was clear to me that what had emerged from the tau-tau mass distribution was just a fluctuation of backgrounds. See, I do not believe in supersymmetry! Regardless of what I believed, however, my posts drew the attention of a New Scientist reporter, who had already contacted John Conway to gather information for his article. He now wanted to add my side of the story to spice things up.
Despite my attempts during our phone conversations at dumping his excitement, the NS reporter ended up producing an article which contained a few inaccuracies, and which put too much emphasis in what I had specifically explained to be, for sure, just a statistical fluctuation. His piece then got picked up by the Economist, which added some additional misrepresentations. The final result was a mediatic bubble which was quite upsetting for a few of my colleagues within CDF. So much so that I, despite having done nothing wrong, apologized with my collaborators for having caused a stir in the media.
Two years later...
More than two years later, we are in the situation of giving a look at a fresh new analysis produced by the DZERO collaboration, which used a larger data sample of proton-antiproton collisions than the one available to Conway in 2007, to further investigate on the existence of a MSSM Higgs boson, by combining searches involving pairs of b-quarks and pairs of tau leptons.
The result, of course, is that there is no such thing: a MSSM Higgs has been excluded by DZERO in the range of theory parameters which was indicated by the 2007 result; this is something which also an update of the analysis by CDF has clarified. So if you only care for exciting news, you can stop reading now. However, we might learn a thing or two by looking at the DZERO analysis in some detail. That is what I offer to do for you in the following; but first, let me give you in my usual inaccurate fashion a very quick and dirty introduction on the Minimal Supersymmetric extension of the Standard Model, and on the few basic facts you need to know about the Higgs boson predicted within that framework.
The Higgs boson in the MSSM
The Minimal Supersymmetric extension of the Standard Model is a subset of a class of theories -generically called supersymmetric- which build on the Standard Model of electroweak interactions to mend a very nagging shortcoming of the SM, called the problem of fine tuning.
In two words, in the SM the Higgs boson mass is unnaturally small, since its value receives very large positive and negative contributions from virtual diagrams. As Michelangelo Mangano aptly puts it, it is as if you asked each of ten friends to give you a irrational positive or negative number of order unity, and upon adding the ten numbers, you found a result equal to 0.000000000000000000000000000000001 or so: you would guess that your friends played you some trick! They must have conjured to nullify the sum of their ten numbers.

five Higgs bosons, whose explanation is given below), and their
corresponding s-particles on the right side.
Bosons will be fermions in the SUSY world, and fermions will be bosons: a really beautiful symmetry, but one which unfortunately is not realized fully in nature. No, it cannot work as is: because all these additional particles have never been seen in Nature. So we need to "break the symmetry" between SM and SUSY, and hypothesize that some mechanism is at work to make the SUSY particle masses much larger than our present detection reach.
So, in order to solve the problem of fine tuning of the SM, we have to assume that there exist more than twenty so-far-unseen elementary particles, and that these particles all have masses above our detection limits, but not too much so (lest their mending effect on the fine-tuning becomes more complicated to keep intact). Together with those additional particles, there are at least 105 new unknown parameters to buy in the package, which the theory does not explain: not just the particle masses, but their couplings, mixings, etcetera. A whole new world to explore.
To be fair, SUSY theories do not just give us a solution to the problem of fine tuning, in exchange for these 105 free parameters and score of new particles they load the theory with. They have the benefit of making more straightforward the unification of forces at very high energy -a very appealing feature for theorists.

Now, let me go back to the spectrum of particles predicted by SUSY theories. As far as the Higgs boson is concerned, in the MSSM (which is a minimal version of the many different SUSY theories that can be formulated) there is not just one such particle, but five different ones; the three electrically neutral ones are called h,H, and A; and then there are a
A value significantly different from 1 of a unknown parameter called
Let us then have a look at the analysis that DZERO recently produced: it allows to peek inside the techniques which are used to extract a potential signal; the techniques rely on the known properties of the Higgs boson, in particular, its expected decays. As mentioned above, these are dominated by tau lepton pairs and b-quark pairs.
The combined DZERO search for MSSM Higgs bosons
The result published by DZERO is a combination of three separate searches for MSSM Higgs bosons, by allowing the Higgs to decay to either tau lepton pairs of b-quark pairs. Why three and not two searches ? Because DZERO considered two different ways of producing the Higgs; in one case, only the tau-lepton final state could be searched, in the other, both final states are possible. Let me explain in more detail this fact.


When directly produced, only a Higgs decay to two tau leptons can be identified because tau leptons provide a clean signature in the detector, and backgrounds are relatively small; for b-quark pairs, the signal would instead be buried in a huge background coming from quantum chromodynamical (QCD) processes: strong interactions which produce pairs of b-quarks with large rate.
If instead it is produced by Higgs-strahlung, the Higgs signal can be searched even in the
Three search channels
The
From an experimental standpoint, there are thus three different possibilities to select Higgs decays to tau lepton pairs: the event will contain an electron and a narrow jet, or a muon and a narrow jet, or an electron and a muon; dielectrons or dimuons, which would suffer from large backgrounds from electroweak processes, are not considered by DZERO.
In the search for the
Finally, in the
Results
The data in each of the three searches are compared with the sum of backgrounds, finding good agreement and no hint of a signal for any Higgs boson mass hypothesis in the studied range. To combine the many different search channels into which the three main topologies are divided (depending on the kind of lepton is identified from tau decay, or the number of jets in the event for the three-b-quark search), the data are combined into bins of similar signal to noise ratio: in this way, the sensitivity of the combination is maximized. One thus obtains a plot where the observed data is shown as a function of the logarithm of the ratio between number expected signal events and background events.

Above you can see the case of a
Below is instead the case for a 220 GeV Higgs boson, at the same value of

From histograms such as the ones shown above, upper limits on the Higgs production cross section can be derived for a variety of values of the parameters describing the MSSM parameter space. Whenever the upper limit on the signal cross section is smaller than the cross section predicted by theory, the corresponding point of the parameter space is excluded. The result is usually displayed in a plot of

The area excluded includes the region once favoured by the 2-standard-deviations Higgs boson signal seen by CDF in January 2007. This is no big news: in fact, a more recent result by CDF had already excluded the former signal, toward the end of that same year. What I think is more relevant is that the present search puts together two very different production processes, and exploits two complementary decay channels. To do better than DZERO, CDF will probably need to use the same technique. Besides, this is what has been used by both experiments for a while now, for SM Higgs searches: the combination of many insignificant results allows to obtain significant advancements. The logic of the ant at work in HEP!
In conclusion...
The Tevatron searches for Supersymmetry have already removed a large chunk of parameter space to these models. The allowed range of some of the parameters has shrunk considerably in the last few years, and yet the faith in SUSY of many colleagues, both theorists and experimentalists, is unshaken. Whenever I talk to one of them, and they show amazement when I declare I do not believe in SUSY, I am left with mixed feelings. Does not the continuously shrinking parameter space get my colleagues thinking that maybe -just maybe- SUSY is a beautiful, deep, erroneous theory of Nature ?
Or maybe I am the one who does not understand that really, naturalness of the Higgs mass and grand unification of the three gauge couplings at a single scale are priceless, and 105 unknown parameters are still a modest price to pay ?
Unfortunately, it will take a long time to find out. Or maybe not: experiments at the LHC, which is starting up this fall at 4 or 5 TeV per beam, might just see cascades of supersymmetric particles from day one after startup.... Let me doubt about that. I would be very, very happy to be proven wrong, but I just do not buy it...
Comments