Ice loss in Greenland, which has been increasing during the past decade over its southern region, is now moving up its northwest coast, according to a study published in Geophysical Research Letters.
A comparison of data from NASA's GRACE Satellite and continuous GPS measurements made from long-term sites on bedrock on the edges of the ice sheet revealed the ice loss. The study indicates the ice-loss acceleration began moving up the northwest coast of Greenland starting in late 2005.
The GPS and GRACE data provided the researchers with monthly averages of crustal uplift caused by ice-mass loss. The team combined the uplift measured by GRACE over United Kingdom-sized chunks of Greenland while the GPS receivers monitor crustal uplift on scales of just tens of miles.
"Our results show that the ice loss, which has been well documented over southern portions of Greenland, is now spreading up along the northwest coast," said Shfaqat Abbas Khan, lead author on a paper that will appear in Geophysical Research Letters.
The team found that uplift rates near the Thule Air Base on Greenland's northwest coast rose by roughly 1.5 inches, or about 4 centimeters, from October 2005 to August 2009. Although the low resolution of GRACE -- a swath of about 155 miles, or 250 kilometers across -- is not precise enough to pinpoint the source of the ice loss, the fact that the ice sheet is losing mass nearer to the ice sheet margins suggests the flows of Greenland outlet glaciers there are increasing in velocity, said the study authors.
"When we look at the monthly values from GRACE, the ice mass loss has been very dramatic along the northwest coast of Greenland," said CU-Boulder physics Professor and study co-author John Wahr, also a fellow at CU-Boulder's Cooperative Institute for Research in Environmental Sciences.
"This is a phenomenon that was undocumented before this study," said Wahr. "Our speculation is that some of the big glaciers in this region are sliding downhill faster and dumping more ice in the ocean."
Researchers have been gathering data from GRACE since NASA launched the system in 2002. Two GRACE satellites whip around Earth 16 times a day separated by 137 miles and measure changes in Earth's gravity field caused by regional shifts in the planet's mass, including ice sheets, oceans and water stored in the soil and in underground aquifers.
"GRACE is unique in that it allows us to see changes in the ice mass in almost real time," said Isabella Velicogna, from the Department of Earth System Science, University of California, Irvine. "Combining GRACE data with the separate signals from GPS stations gives us a very powerful tool that improves our resolution and allows us to better understand the changes that are occurring."
In addition to monitoring the Thule GPS receiver in northwest Greenland as part of the new GRL study, the team also is taking data from GPS receivers in southern Greenland near the towns of Kellyville and Kulusuk. An additional 51 permanent GPS stations recently set up around the edges of the Greenland ice sheet should be useful to measure future crustal uplift and corresponding ice loss, said Wahr.
"If this activity in northwest Greenland continues and really accelerates some of the major glaciers in the area -- like the Humboldt Glacier and the Peterman Glacier -- Greenland's total ice loss could easily be increased by an additional 50 to 100 cubic kilometers (12 to 24 cubic miles) within a few years," said Khan.
Citation: , 'Spread of ice mass loss into northwest Greenland observed by GRACE and GPS', Geophys. Res. Lett., 37, L06501; doi:10.1029/2010GL042460
Ice Loss Spreading Up Greenland's Northwest Coast
Comments